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1. Introduction

In this note we present an immersed boundary (IB) method for restricted diffusion with permeable interfaces. These prob-
lems arise under a variety of circumstances, e.g., in thermal contact problems [7]. Diffusion in a medium consisting of two
regimes separated by permeable boundaries is another example. It is well known that cell boundaries in a living tissue are
permeable to oxygen and water molecules [3]. In this case, the cell boundaries can be treated as interfaces permeable to dif-
fusive fluxes.

Typically, the conduction of heat and diffusive motion of molecules can be described by the diffusion equation in the bulk
ct ¼ r � ðDrcÞ; ð1Þ
where c is the concentration (or temperature) and D is the diffusion coefficient. At the interface C, a flux law is also needed
and given in this note in a relatively general form1
Drc ¼ P½gðcÞ�Cn ð2Þ
for a given function g. Here P is the permeability, ½��C denotes the jump of concentration across the interface and n is the unit
normal vector of the interface. Standard numerical methods such as the finite difference or finite element methods can be
used to solve the above problem. In the context of finite difference/volume methods, one can either try to map the interface
into a regular shape so that it coincides with the grid or use an unstructured grid. The finite element method is better
equipped for this problem as the interface can be naturally approximated. However, it becomes less efficient when the inter-
face moves.
. All rights reserved.
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flux in the tangential direction. It is an assumption made here to simplify the presentation.
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The immersed boundary (IB) method is an elegant numerical technique developed by Peskin [9,10] to simulate the inter-
action between immersed elastic fibers with the carrying fluid, as a model for the pumping motion of a human heart. It has
the advantage of solving a complicated moving interface problem on a fixed Cartesian grid by a standard finite difference
(volume) method. The IB method, due to its simplicity, has been applied to many fluid flow problems and become one of
the main numerical techniques for scientific computation [8,11]. A closely related method which has gained popularity in
recent years is the immersed interface method developed in [6]. In the context of porous interfaces, a number of authors
have developed models which incorporated porosity into the immersed boundary and immersed interface frameworks, cf.
[1,4,5,12].

In this note, we propose an IB method for the restricted diffusion problem, as a first step toward developing an efficient
numerical method for solving fluid–structure interaction [12] coupled with diffusion of solvents. The key idea of our method
is to use flux as an additional variable f (vector in the multidimensional case). Using both c and f, we reformulate the original
problem given by (1) and (2) into a single set of equations which are valid in the entire domain, including the bulk region and
the interfaces, standard finite difference approximation can be applied on a uniform grid. Our method can be extended to
problems in multiple space dimensions with moving interfaces. For simplicity, we will restrict our discussion for problems
with fixed interfaces in this note and postpone the discussion on the moving interface problems in a future paper where both
diffusion and convection are present.

2. IB formulation

To simplify the presentation and without loss of generality, we consider a domain X with an immersed permeable inter-
face C. The diffusion problem can be re-formulated under the immersed boundary framework by applying the following
equation on the entire domain X
ct ¼ r � Drc þ
Z

C

Df
Pg0ðcÞ

dðx� xCÞdxC

� �
; ð3Þ
where f is the flux and dðx� xCÞ is the delta function. It is easy to see that (3) is equivalent to (1) when x 2 X=C. The singular
term forces a jump in c at the interface C and below we give a brief justification on how condition (2) leads to Eq. (3).

Since c is smooth everywhere except at the interface C, we write c ¼ cs þ ½c�Hðx� xCÞwhere H takes the values of zero on
one side of the interface and one on the other side. Taking the gradient yields
rc ¼ rcs þ n
Z

C
½c�dðx� xCÞdxC ¼ rcs �

Z
C

f
Pg0ðcÞ

dðx� xCÞdxC
using Eq. (2). Therefore,
Drc þ
Z

C

Df
Pg0ðcÞ

dðx� xCÞdxC ¼ Drcs
and
r � Drc þ
Z

C

Df
Pg0ðcÞ

dðx� xCÞdxC

� �
¼ r � ðDrcsÞ:
When the flux is continuous, the jump ½c� does not contribute to the flux, thus
r � ðDrcsÞ ¼ �r � f ¼ ct:
In order to solve for c using (3), we need to find a way to compute the flux f on the entire domain X. First of all, we note
that in X=C, by applying the following identity:
rðg0ðcÞctÞ ¼ g0ðcÞðrcÞt þ g00ðcÞctrc; ð4Þ
and Eq. (1), we obtain the following equation:
g0ðcÞft ¼ g00ðcÞfr � f þ Drðg0ðcÞr � fÞ: ð5Þ
On the other hand, by taking the time derivative of the jump condition (2), we obtain
ft � n ¼ P½g0ðcÞr � f�C: ð6Þ
The equation for f on the entire domain X can be obtained by combining Eq. (5) with condition (2)
ft g0ðcÞ þ
Z

C

D
P

dðx� xCÞdxC

� �
¼ g00ðcÞfr � f þ Drðg0ðcÞr � fÞ: ð7Þ
It is easy to verify that (7) implies (5) for x 2 X=C. Furthermore, integrating (7) across the interface C yields the jump con-
dition (6).
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To solve (3) and (7) numerically, we replace the delta function by its discrete version, dh, and discretize the equation using
standard finite volume method. In this study, we use the following discrete delta function proposed by Peskin [9]
Fig. 1.
P ¼ 0:2
dh ¼
1

ð2hÞd
Yd

j¼1

1þ cos
pðxj � xC;jÞ

h

� �
ð8Þ
for jxj � xC;jj 6 h for j ¼ 1; . . . ; d and dh ¼ 0 otherwise. Here d is the dimension and h is the regularization parameter, normally
taken as the grid size.

3. Numerical tests

We now present numerical tests by applying the proposed IB method to several problems in one and two space dimen-
sions. Since our main objective is to demonstrate the applicability of the methodology, we have not attempted to carry out
detailed convergence analysis.

3.1. Heat conduction in solids with thermal contact resistance at the interface

Our first test is on heat conduction in solids where the heat transfer between the bulk regimes is given by two different
laws, for comparison purposes. The first one is the linear (Newton’s cooling) law in the form of
Drc � n ¼ P½c�; ð9Þ
where D ¼ k=qcp and P ¼ h=qcp. Here k, q and h are the conductivity, density and heat transfer coefficient. This fits our gen-
eral formulation with gðcÞ ¼ c and the concentration of the particles and its flux satisfy the following coupled equations:
ct ¼ r � Drc þ
Z

C

Df
P

dðx� xCÞdxC

� �
; ð10Þ

ft 1þ
Z

C

D
P

dðx� xCÞdxC

� �
¼ Drðr � fÞ: ð11Þ
The second law is by radiation,
Drc � n ¼ P½c4�; ð12Þ
where P ¼ r=qcp and r is the Stefan–Boltzmann constant. This corresponds the case with gðcÞ ¼ c4 and the governing equa-
tions are
ct ¼ r � Drc þ
Z

C

Df
4c3P

dðx� xCÞdxC

� �
; ð13Þ

ft 4c3 þ
Z

C

D
P

dðx� xCÞdxC

� �
¼ 12c2fr � f þ Drð4c3r � fÞ: ð14Þ
In Fig. 1(a) and (b), we have plotted the steady state solution of a one-dimensional heat transfer problem where the tem-
perature is fixed at the each end of the interval. The interfaces are located at x1 ¼ 7=18 and x2 ¼ 11=18 and value of P is taken
as 1=5 and D ¼ 1. For each case, the exact solution can be obtained as
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Steady state solution with (a) the linear law and (b) nonlinear (radiation) law on the interfaces located at x1 ¼ 7=18 and x2 ¼ 11=18 with
;D ¼ 1; c0 ¼ 2 and c1 ¼ 1. The solid lines are exact solutions and the symbols are numerical solutions computed on a grid with size dx ¼ 0:02.
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c ¼
mxþ c0; x < x1;

mxþ cm; x1 6 x < x2;

mðx� 1Þ þ c1; x P x2;

8><
>: ð15Þ
where c0 and c1 are the values of the solution at x ¼ 0 and 1, respectively. For the linear flux law at the interface, m and cm can
obtained as
m ¼ c1 � c0

2DP�1 þ 1
; cm ¼

DP�1ðc0 þ c1Þ þ c0

2DP�1 þ 1
:

However, for the nonlinear fourth order law, we need to solve a set of two nonlinear equations given by the jump conditions
at x1 and x2. More in-depth discussions on thermal contact resistance can be found in [7].

3.2. Diffusion of non-ionic particles

We now present test results for the diffusion of non-ionic particles. We consider the case where the flux is linearly pro-
portional to the jump of the concentration
Drc � n ¼ P½c�C: ð16Þ
3.2.1. An one-dimensional example
In Fig. 2(a), we have plotted the evolution of the concentration in one space dimension, starting from initial condition

cðt0; xÞ ¼ Gðt0; x� x0Þ where
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Evolution of concentration from initial condition cðt0; xÞ ¼ Gðt0; x� x0Þ where t0 ¼ 10�4 and Gðt; xÞ is the fundamental solution, (a) at
10�3;2� 10�3, 3� 10�3, 4� 10�3;5� 10�3 and 10�2; (b) comparison between unrestricted (broken line) and restricted (solid line) diffusion at
10�3. The interfaces are located at x ¼ 7=18 and x ¼ 13=18 and the computations are done on a grid with size dx ¼ 0:02.
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Concentration at t ¼ t0 þ 5� 10�3 with a flat interface located at x ¼ 11=18. The initial solution is cðt0; x; yÞ ¼ Gðt0; x� x0Þ. The solid line is the result
e-dimensional computation and the dots and circles are from two-dimensional computation, at y ¼ 0 and y ¼ 0:5, respectively.
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Fig. 4. Contours of concentration at time t ¼ t0 þ 10�2: (b) and (d) with semi-circular and circular interfaces, respectively. The corresponding initial solution
cðt0; x; yÞ ¼ G2ðt0; x� x0; y� y0Þ for t0 ¼ 10�4 are shown in (a) and (c). The circles indicate the marker points on the interface (not all are shown).

H. Huang et al. / Journal of Computational Physics 228 (2009) 5317–5322 5321
Gðt; xÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
4pDt
p e�

x2
4Dt:
We have taken x0 ¼ 0:5 and t0 ¼ 10�4 with two interfaces at x ¼ 7=18 and x ¼ 13=18. The parameter values are D ¼ 1 and
P ¼ 50. In Fig. 2(b), we compare the values of the concentration at t ¼ t0 þ 10�3 between the one with interfaces (solid line)
and the one without interface (broken line), Gðt; x� x0Þ.

3.2.2. Two-dimensional examples
We have carried out two tests, one with flat interface and the other with an interface in the form of a circular arc. In the

first test, we start the computation with an initial condition cðt0; x; yÞ ¼ Gðt0; x� x0Þ and an interface at x ¼ 11=18. The solu-
tion is one-dimensional and agrees well with the one-dimensional computation, cf. Fig. 3.

In the second example, we use initial condition cðt0; x; yÞ ¼ G2ðt0; x� x0; y� y0Þ where
G2ðt; x; yÞ ¼
1

4pDt
e�

x2þy2

4Dt :
We considered two cases: one with a semi-circular interface and the other with a circular interface. The evolution of the con-
centration at t ¼ t0 ¼ 10�4 and t ¼ t0 þ 10�2 is shown in Fig. 4 for both cases.

All the computations are carried out on a uniform grid with size 1=128. The marker points on the interface are 120 and 60
for the circular and semi-circular interfaces, respectively. The other parameters are chosen as D ¼ 1 and P ¼ 10.
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4. Conclusion

In this note we have presented an immersed boundary method for restricted diffusion with permeable interfaces. We
used diffusion in a domain with simple interfaces as examples to illustrate the basic idea. Our method is applicable to more
general problems and work is underway to extend the method to convection–diffusion problems with more complex inter-
face shapes. A related issue needs to be explored further is the stiffness of the IB formulation and its implication for time-
stepping schemes. Analysis along the line of [13,2] will be of practical interest.
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